Noncrossing sets and a Graßmann associahedron

نویسندگان

  • Francisco Santos
  • Christian Stump
  • Volkmar Welker
چکیده

We study a natural generalization of the noncrossing relation between pairs of elements in [n] to k-tuples in [n]. We show that the flag simplicial complex on ( [n] k ) induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset given by the product [k]× [n− k] of two chains, and it is the join of a simplex and a sphere (that is, it is a Gorenstein triangulation). This shows the existence of a flag simplicial polytope whose Stanley-Reisner ideal is an initial ideal of the Graßmann-Plücker ideal, while previous constructions of such a polytope did not guaranteed flagness. The simplicial complex and the polytope derived from it naturally reflect the relations between Graßmannians with different parameters, in particular the isomorphism Gk,n ∼= Gn−k,n. This simplicial complex is closely related to the weak separability complex introduced by Zelevinsky and Leclerc. Résumé: Nous étudions une généralisation naturelle de la relation entre les paires d’éléments non-croisés de [n] et les k-uplets de [n]. Nous montrons que le complexe simplicial de drapeau sur ( [n] k ) induit par cette relation est une triangulation régulière, unimodulaire et de drapeau du polytope d’ordre de l’ensemble partiellement ordonné obtenu par le produit [k] × [n − k] des deux chaı̂nes, et c’est la jointure d’un simplexe et une sphère (c’est-à-dire qu’elle est une triangulation de Gorenstein). Cela montre l’existence d’un polytope simplicial de drapeau dont l’idéal de Stanley-Reisner est un idéal initial de l’idéal de Graßmann-Plücker, tandis que les constructions précédentes d’un tel polytope ne garantissaient pas la propriété de drapeau. Le complexe simplicial et le polytope qui en découle reflètent naturellement les relations entre les Grassmanniens avec différents paramètres, en particulier l’isomorphisme Gk,n ∼= Gn−k,n. Ce complexe simplicial est étroitement lié au complexe de séparabilité faible étudié par Zelevinsky et Leclerc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncrossing Sets and a Grassmann Associahedron

We study a natural generalization of the noncrossing relation between pairs of elements in [n] to k-tuples in [n] that was first considered by Petersen et al. [J. Algebra 324(5) (2010), 951–969]. We give an alternative approach to their result that the flag simplicial complex on ([n] k ) induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset ...

متن کامل

Rational Associahedra and Noncrossing Partitions

Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...

متن کامل

Noncrossing Hypertrees

Hypertrees and noncrossing trees are well-established objects in the combinatorics literature, but the hybrid notion of a noncrossing hypertree has received less attention. In this article I investigate the poset of noncrossing hypertrees as an induced subposet of the hypertree poset. Its dual is the face poset of a simplicial complex, one that can be identified with a generalized cluster compl...

متن کامل

Associahedra via Spines

An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree to...

متن کامل

Combinatorial Statistics on Alternating Permutations

We consider two combinatorial statistics on permutations. One is the genus. The other, d̂es, is defined for alternating permutations, as the sum of the number of descents in the subwords formed by the peaks and the valleys. We investigate the distribution of d̂es on genus zero permutations and Baxter permutations. Our qenumerative results relate the d̂es statistic to lattice path enumeration, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014